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Spatial versions of the Zakharov and Dysthe
evolution equations for deep-water gravity waves
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A spatial two-dimensional version of the Zakharov equation describing the evolution
of deep-water gravity waves is used to derive two fourth-order evolution equations,
for the amplitudes of the surface elevation and of the velocity potential. The scaled
form of the equations is presented.

1. Introduction
Zakharov (1968) derived an equation which describes the temporal evolution of

deep-water waves in the wave-vector Fourier space. This equation is valid to the
third order in the wave steepness ε and does not have any restrictions on the
spectral width. It was used in the same paper to derive the cubic Schrödinger
equation which describes the temporal evolution of the wave envelope under the
assumption of a narrow spectrum. The cubic Schrödinger equation was subsequently
derived by a multiple-scale perturbation method and applied to studies of water
waves by numerous investigators; for references see e.g. Mei (1989). Unsatisfied by
the unfavourable comparison of the solution of the cubic Schrödinger equation
with the exact computations, Dysthe (1979) extended the perturbation analysis to
the fourth-order in ε. Stiassnie (1984) obtained the fourth-order modified nonlinear
Schrödinger (MNLS) equation from the third order (in the wave amplitude) Zakharov
equation assuming the narrow spectrum approximation. This became possible since
the fourth order in the Dysthe equation emerges only due to the narrow spectrum
approximation, as mentioned by Stiassnie. Extension of the Dysthe MNLS equation
to arbitrary water depth was carried out by Brinch-Nielsen & Jonsson (1986) by
applying the perturbation expansion method.

Hogan (1985, 1986) followed the approach of Stiassnie to derive from the Zakharov
equation two separate fourth-order evolution equations in the physical space for
gravity–capillary waves. He distinguished between the evolution equations for the
amplitude of the velocity potential, as obtained by Dysthe (1979), and for the surface
elevation. Lo & Mei (1985) introduced a transformation of the Dysthe equation
which allows the study of the spatial evolution of unidirectional nonlinear wave
groups in scaled variables. Their numerical solutions were in qualitative agreement
with experimental observations, exhibiting strong front–tail asymmetry of the group
envelope. The broader band (BMNLS) equation was obtained by Trulsen & Dysthe
(1996, 1997) by expanding the linear part of the equation to higher order in the
spectral width. A further attempt in this direction was undertaken by Trulsen et al.
(2000). They indicated that their model could be extracted from the Zakharov (1968)
equation.
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A quantitative comparison with the experiments carried out in laboratory tanks,
as well as modelling of wave propagation in the coastal zone, requires application
of equations describing the evolution in space. A unidirectional spatial version of
the Zakharov equation was derived in Shemer et al. (2001). Numerical solutions of
this equation compared favourably with the experimental results. Qualitative and
quantitative agreement was obtained between the numerical simulations and the
measurements of the variation of the wave group shapes and the amplitude spectra
of the surface elevation along the tank. It is quite natural to use the spatial form of
the Zakharov equation to derive the fourth- and higher-order amplitude evolution
equations in physical space. This is carried out in § 2.

2. Model derivation
The Zakharov equation which describes the slow temporal evolution of the complex

amplitude B(k, t) of a nonlinear wave field in the wave-vector Fourier space can be
presented in a polar coordinate system as

i
∂B

∂t
=

∫ ∞
0

dk1 dk2 dk3

∫ π

−π
k1 dθ1k2 dθ2k3 dθ3T (k, θ, k1, θ1, k2, θ2, k3, θ3)

×B∗(k1, θ1)B(k2, θ2)B(k3, θ3)δ(k + k1 − k2 − k3)e
−i(ω+ω1−ω2−ω3)t. (2.1)

This presentation allows the generalization of the unidirectional spatial version of the
Zakharov equation, Shemer et al. (2001), to the horizontal plane x = (x, y):

i(cg·∇h)B(ω, θ, x) =

∫ ∞
−∞

dω1 dω2 dω3

∫ π

−π
dθ1 dθ2 dθ3T (ω, θ, ω1, θ1, ω2, θ2, ω3, θ3)

k1k2k3B
∗(ω1, θ1)B(ω2, θ2)B(ω3, θ3)

1

2πk
δ(ω + ω1 − ω2 − ω3)e

−i(k+k1−k2−k3)·x, (2.2)

where the group velocity vector for deep water cg = [ω2k(ω)]k/k and the horizontal
operator ∇h = (∂/∂x/∂/∂y), k being the wave vector. Equation (2.2) describes the
slow spatial evolution of nonlinear waves satisfying conditions of near resonance:
ω + ω1 − ω2 − ω3 = 0; |k + k1 − k2 − k3| = O(ε2), where ε is the nonlinearity
parameter representing the wave steepness. The interaction coefficient T is given in a
relatively compact form for precise resonance conditions by Zakharov (1999). For the
near resonating quartets, the exact value of the interaction coefficient deviates from
this value by a term of order ε2 (Krasitskii & Kalmykov 1993; Annenkov, private
communication). Hence, equation (2.2) with the expression for T given in Zakharov
(1999) accurately describes the evolution of a wave field with a spectrum of arbitrary
width at the third order in wave steepness. Equation (2.2) is now used to derive the
fourth-order spatial version of the Dysthe equation, invoking the narrow spectrum
approximation.

The free surface elevation η(x, t) and the velocity potential at the free surface
ψ(x, t) = φ(x, η, t) are related at the leading order to the complex amplitudes B(ω, θ):

η(x, t) =
1

2π

∫ ∞
−∞

dω

∫ π

−π
k(ω)dθ

(
ω

2g

)1/2

{B(ω, θ) exp[i(k · x− ωt)] + c.c}, (2.3a)

ψ(x, t) = − i

2π

∫ ∞
−∞

dω

∫ π

−π
k(ω)dθ

( g

2ω

)1/2 {B(ω, θ) exp[i(k · x− ωt)]− c.c}. (2.3b)

The narrow spectrum case is considered, ω = ω0 + Ω, and k = k0 + χ, where
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Ω/ω0 = O(ε), k0 = (k0, 0), | χ|/k0 = O(ε) and χ = (χ, k0ϑ), ϑ = O(ε). A new variable is
now introduced:

A(Ω, ϑ, x) = B(ω, θ, x) exp[i(kx(ω0 + Ω, ϑ)− k0)x]. (2.4)

Substitution of (2.4) into (2.2) and (2.3) yields

i
∂A(Ω, ϑ, x)

∂x
+ [kx(ω0 + Ω, ϑ)− k0]A(Ω, ϑ, x)

=
2kx(ω0 + Ω, ϑ)

ω0 + Ω

k2
0

2π

∫ π

−π
dϑ1dϑ2dϑ3

∫ ∞
−∞

dΩ2dΩ2dΩ3

×T (ω0 + Ω, ϑ, ω0 + Ω1, ϑ1, ω0 + Ω2, ϑ2, ω0 + Ω3, ϑ3)e
−ik0(ϑ+ϑ1−ϑ2−ϑ3)y

×A∗(Ω1, ϑ1)A(Ω2, ϑ2)A(Ω3, ϑ3)δ(Ω + Ω1 − Ω2 − Ω3). (2.5)

The spatially evolving complex amplitudes aη and aψ are related to η(x, t) and ψ(x, t):

η(x, t) = Re[aη(x, t) exp i(k0x− ω0t)], (2.6a)

ψ(x, t) = Re[−i
g

2ω0

aψ(x, t) exp i(k0x− ω0t)]. (2.6b)

Following the approach suggested by Stiassnie (1984), the relation between the am-
plitudes aη and aψ to the variable A(Ω, ϑ, x) is obtained:

aη(x, t) =
k0

2π

(
2ω0

g

)1/2 ∫ π

−π
dϑ

∫ ∞
−∞

[(
1 +

Ω

2ω0

)
A(Ω, ϑ, x)e−iΩteik0ϑydΩ

]
, (2.7a)

aψ(x, t) =
k0

2π

(
2ω0

g

)1/2 ∫ π

−π
dϑ

∫ ∞
−∞

[(
1− Ω

2ω0

)
A(Ω, ϑ, x)e−iΩteik0ϑydΩ

]
. (2.7b)

The wavenumber difference on the left-hand side of (2.5) can be expanded as

kx(ω0 + Ω, ϑ)− k0 =
2k0

ω0

Ω +
k0Ω

2

ω2
0

− k0

2
ϑ2 +

k0

ω0

ϑ2Ω + O(ε4). (2.8)

Note that for a unidirectional case (ϑ ≡ 0), the expansion (2.8) to the second order
in Ω is exact due to the deep-water dispersion relation (k = ω2/g), in contrast to
an infinite number of terms required for the expansion of the frequency difference in
Stiassnie (1984) and Hogan (1985), where ω = (gk)1/2.

The small parameter of the problem ε = a0k0, where a0 is the maximum wave
amplitude. Dimensionless scaled variables are now introduced:

aη = a0Aη, aψ = a0Aψ, φ = ω0a
2
0Φ,

εω0

(
2k0

ω0

x− t
)

= τ, εk0y = Y , ε2k0x = X, εk0x = Z.

 (2.9)

After expansion of the coefficient T to the first-order in Ω (there are no first-order
terms in the expansion of T in ϑ), and following again the procedure outlined in
Stiassnie (1984), two dimensionless evolution equations in the physical space are
obtained:

∂Aη

∂X
+ i

∂2Aη

∂τ2
− i

2

∂2Aη

∂Y 2
+ ε

∂3Aη

∂τ∂Y 2
+ i|Aη|2Aη + 8ε|Aη|2 ∂Aη

∂τ

+2εA2
η

∂A∗η
∂τ

+ 4iεAη
∂Φ

∂τ

∣∣∣∣
Z=0

= 0, (2.10a)
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∂Aψ

∂X
+ i

∂2Aψ

∂τ2
− i

2

∂2Aψ

∂Y 2
+ ε

∂3Aψ

∂τ∂Y 2
+ i|Aψ|2Aψ + 8ε|Aψ|2 ∂Aψ

∂τ

+4iεAψ
∂Φ

∂τ

∣∣∣∣
Z=0

= 0. (2.10b)

The scaled velocity potential Φ satisfies

4
∂2Φ

∂τ2
+
∂2Φ

∂Y 2
+
∂2Φ

∂Z2
= 0, −εk0h < Z < 0 (2.11)

with the boundary conditions

∂Φ

∂Z

∣∣∣∣
Z=0

=
∂|Aψ|2
∂τ

∂Φ

∂Z

∣∣∣∣
Z=−εk0h

= 0. (2.12)

At this order, Aη can be used in (2.12) as well. For the spectral width of the order
of ε adopted in our study, equations (2.10a, b) are equivalent to (2.16) and (2.10) in
Trulsen & Dysthe 1997 up to the fourth order. (In Trulsen & Dysthe 1997, the last
four terms are of higher order if the present assumption on the spectral width is
adopted.)

3. Conclusions
The Dysthe equations for the amplitudes of both surface elevation and the velocity

potential were obtained from the spatial version of the two-dimensional Zakharov
equation. Since the interaction coefficient T is known for the intermediate water
depth as well, the present derivation can be easily extended to arbitrary water depth.
For the two-dimensional case, the series expansion in the linear term in (2.5) can be
easily carried out to any desired order, thus allowing the adoption of the approach
of Trulsen et al. (2000) to the spatial evolution case. The increased accuracy of
the expansion, however, does not generate additional terms in the unidirectional
evolution equation, since for the one-dimensional case, there are no terms beyond
quadratic. This explains the observation of Trulsen & Dysthe (1997) that in this case
the broad-band NLS equation is equivalent to the corresponding Dysthe equation.
An expansion of the nonlinear part of the equations to the order beyond O(ε4) in the
spectral width is possible using both temporal and spatial versions of the Zakharov
equation. However, care then should be taken to account for the additional terms
in the interaction coefficient T that arise when the exact resonance conditions are
not satisfied, Krasitskii & Kalmykov (1993). For weakly nonlinear Rossby waves,
a higher-order NLS was obtained by Luo (2001) using the perturbation expansion
method. Generalization of his higher-order model to water gravity waves requires
accounting for terms related to the variation of the induced mean current.

The ocean wave spectrum is usually quite narrow. Equations (2.10) to (2.12) can
therefore be used to describe the spatial evolution of propagating waves. When the
initial conditions are provided in terms of surface elevation (e.g. are measured by
directional a buoy or by an array of pressure transducers), the use of the equation
for surface elevation is appropriate. For cases when velocities are measured directly,
by either current meters or some remote sensing technique, like an along-track
interferometric SAR, the use of the potential amplitude equation becomes more
straightforward.
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